

DA Registry

Application Developer Guide

 Digital Green

 February, 2024

Acronyms

DA Registry – Developer Guide

2

DA - Development Agent

EA – Extension Agent

MoA – Ministry of Agriculture

1. Introduction
1.1. Overview

This Developer guide provides general information for managing, maintaining,
deploying and troubleshooting the DA Registry web application.

DA Registry is a digital data management system built for the purpose of managing
and maintaining profiles of DAs within the extension department of MoA. This web-
based application provides access to federal, regional, zonal, woreda and kebele level
extension department users maintain DA profiles. In general, this platform will let the
extension system digitize the process of DA profile management and creates a central
pool of profiles that can be managed within each hierarchical level structures within
MoA.

1.2. Audience

The primary audience for this guide is web application developers, maintainers,
database administrators and IT professionals responsible for the upkeep of the DA
Registry System.

2. System Overview
2.1. System Components and Technology Stack

DA Registry – Developer Guide

3

2.2. Repositories
Frontend Repository (https://github.com/digitalgreenorg/da_regis

try/)

Backend Repository https://github.com/digitalgreenorg/da_regist
ry/

Environments:
 Development:
 Staging
 Production
 Demo

https://dev.digiext.org/
https://stage.digiext.org/
https://prod.digiext.org/
https://demo.digiext.org/

3. Environment Setup

3.1. Installation Instructions
3.1.1. Environment Prerequisites

✔ Ubuntu Server
✔ Docker and Docker Compose install
✔ Git Repository
✔ Jenkins
✔ Ansible
✔ web server

3.1.2. CI/CD Setup

✔ Code Repository: Developers commit their code changes to a Git
repository. This repository serves as the source of truth for the project.

✔ Webhook/Trigger: Whenever a developer commits new code or pushes
changes to the Git repository, a webhook or trigger is set up to notify
Jenkins about the changes. This webhook can be configured to
automatically initiate the CI/CD pipeline.

✔ Jenkins Server: Jenkins is used as the automation server to manage the
CI/CD pipeline. It monitors the Git repository for changes.

✔ Source Code Pull: Jenkins detects the code changes and pulls the latest
code from the Git repository to ensure it has the most up-to-date source
code to work with.

https://dev.digiext.org/
https://dev.digiext.org/
https://dev.digiext.org/
https://stage.digiext.org/
https://stage.digiext.org/
https://stage.digiext.org/
https://prod.digiext.org/
https://prod.digiext.org/
https://prod.digiext.org/
https://demo.digiext.org/
https://demo.digiext.org/
https://demo.digiext.org/

DA Registry – Developer Guide

4

✔ Docker Image Build: After pulling the latest code, Jenkins initiates a build
process for creating a Docker image. This step involves compiling the
code (if necessary), resolving dependencies, and creating a Docker
image containing the application.

✔ Docker Image Push: Once the Docker image is built successfully, Jenkins
pushes the newly created Docker image to a Docker Hub repository or
another container registry. This step ensures that the latest version of the
application is available for deployment.

✔ Ansible Playbook Execution: An Ansible playbook is triggered by Jenkins.
This playbook is responsible for managing the deployment process on
the target server(s). The playbook performs the following tasks: -
Removes the previous version of the application or any existing
containers. - Pulls the latest Docker image from Docker Hub or the
container registry. - Starts the application using Docker Compose or any
other suitable orchestration tool. This step can include setting
environment variables, configuring network settings, and managing any
other necessary setup.

✔ Notification: Jenkins can send notifications or reports to relevant team
members or stakeholders, informing them about the status of the CI/CD
pipeline, including whether the deployment was successful or
encountered any issues.

✔ Pipeline Automation: The CI/CD pipeline is fully automated, reducing the
need for manual intervention. This ensures that code changes are
quickly and consistently deployed to the production environment.

✔ Location of environment variable files
o env ui: /home/jenkins/env/env_dev_ui.sh
o env be:/home/jenkins/env/env_dev_be.sh
o env db:/home/jenkins/env/env_dev_db.sh

✔ Pipeline Configuration

pipeline {
 agent any
 stages {
 stage('Checkout the code') {
 steps {
 checkout([$class: 'GitSCM', branches: [[name: '*/dev']], extensions: [],
userRemoteConfigs:
[[credentialsId: 'jenkins-git', url: 'https://github.com/digitalgreenorg/da_registry']]])
 }
 }

 stage('Build and Push Frontend Image') {
 steps {
 script {
 dir('src/frontend') {
 // Build and push frontend Docker image

DA Registry – Developer Guide

5

 sh "docker build -t farmstack/ea-registry-dev-ui ."
 withCredentials([usernamePassword(credentialsId: '02e85174-922d-4606-bb0b-
c7030dc54350', passwordVariable: 'DOCKER_PASSWORD', usernameVariable:
'DOCKER_USER')]) {
 sh 'docker login -u $DOCKER_USER -p $DOCKER_PASSWORD'
 sh 'docker push farmstack/ea-registry-dev-ui'
 }
 }
 }
 }
 }

 stage('Build and Push Backend Image') {
 steps {
 script {
 dir('src/backend') {
 // Build and push backend Docker image
 sh "docker build -t farmstack/ea-registry-dev-be ."
 sh 'docker push farmstack/ea-registry-dev-be'
 }
 }
 }
 }

 stage('Triggering Ansible Playbook') {
 steps {
 script {
 sh 'cp -r /home/jenkins/ansible/conf/* .'
 sh 'cp -r /home/jenkins/ansible/yaml-files/ea-registry/* /var/lib/jenkins/workspace/ea-
registry/.'
 sh 'ansible-playbook ea-registry-dev.yaml'
 }
 }
 }
 }

 post {
 success {
 emailext (
 attachLog: true,
 body: 'Build is successfully deployed for ea-registry-dev....!',
 subject: '$PROJECT_NAME - Build # $BUILD_NUMBER - $BUILD_STATUS!!',
 to: 'DA_UPD_dev@digitalgreen.org'

)
 }
 failure {
 emailext (
 attachLog: true,
 body: 'Build has failed for ea-registry-dev....!',
 subject: '$PROJECT_NAME - Build # $BUILD_NUMBER - $BUILD_STATUS!!',
 to: 'DA_UPD_dev@digitalgreen.org'

DA Registry – Developer Guide

6

)
 }
 }
}

4. Database Schema
5. API Documentation

5.1. Endpoints
5.2. Authentication

6. Deployment Process
6.1. Build Instructions
6.2. Deployment Steps

7. Versioning and Change Log
8. Contact Information
9. Appendix

